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ABSTRACT 

We present a numerical experimentation of the global 
optimization algorithm presented by Velázquez et. al. [3] applied 
to a nonlinear hyperboloid least squares problem. This problem 
arises when beta sheet residues from an allosteric enzyme are 
fitted onto a hyperboloid by using Newton type methods. The 
results show that the algorithm performs well on three testcases. 
An important side result of this study is that the nonlinear fitting 
procedure is vastly superior to the linear least squares procedures 
traditionally used for this type of problems. 

Categories and Subject Descriptors 

G.1.6 [Numerical Analysis]: Optimization – global optimization, 
least squares methods, nonlinear programming.  

General Terms 

Algorithms, Experimentation. 

Keywords 

Global optimization, least squares methods, and Levenberg-
Marquardt method. 

1. INTRODUCTION 
We studied a nonlinear least squares problem that arises in a 
process of hyperbola fitting to the Carbon alpha (Ca) atoms 
positions of selected beta sheets in proteins. Beta sheets are one of 
the most dominating secondary structure elements and they can be 
approximated by the hyperbola.  
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Especially interesting problems arises when we study allosteric 
enzymes. Those are responsible for controlling cell function and 
change differentially the activity in response to external effectors. 
Our purpose is to describe the conformational changes of the beta 
sheets between the active (R-state) and inactive (T-state) of 
allosteric enzymes. 

1. PROBLEM DATA AND FORMULATION 
First, we study the data obtained from a protein with a clear barrel 
structure to test the effectiveness of the algorithms. It is 
convenient to use this data since we expect the mapped atoms to 
arrange themselves in a barrel shape around the calculated 
hyperboloid. 
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Figure 1. TIM Barrel atom positions. 

 

The model used to map the atoms is given by the equation of a 
one-sheeted hyperboloid oriented along the z-axis. In order to 

map the atom positions ( , , )i i ix y z for 1, , i m= … onto the 

hyperboloid, three steps must be followed: First, the data must be 
rotated, then translated, and finally the best hyperboloid must be 

found to match the new position of the atoms in 3ℜ . For the 

rotation of the atom positions, we use the following 

matrix 3 3xA∈ℜ : 
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Then, the new position of the atoms is calculated by 
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where the vector 1 2 3( ,  ,  )t t t  represents the translation in the 

, ,x y z  coordinates, respectively. 

Now we pose the data fitting problem as an unconstrained 
minimization problem 

minimize  ( )f w  

where the objective function : n
f ℜ → ℜ is a twice continuously 

differentiable nonlinear least squares function given by 
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and 9

1 2 3( , , , , , , , , )Ta b c t t tφ θ γ ∈ℜ is the vector of unknown 

parameters. 

Then for each atom 1, , i m= … , the residual function ( )ir w  

determines how well the observed data approximates the 
calculated data. 

We are interested in finding the global minimum solution
*

w that 

is *( ) ( )f w f w≤ for all 9w∈ℜ , and m n> . 

In this problem, the objective function value at the global 

minimum 
*

w  is never zero, i.e. 
*( ) 0f w > . The first and second 

derivatives of f are 
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respectively. On the technique used the second order information 

of the residual function is approximated by ( )
k

R xτ  and 0.τ ≥  

2. ALGORITHM 
We apply the global optimization algorithm presented by [1] for 
solving nonzero or small residual nonlinear least squares 
problems. This strategy compared favorably with the classical 
damped Levenberg-Marquardt, Gauss-Newton method, tunneling 
and simulated annealing techniques on problems of significant 
sizes. Therefore, we use this technique for solving the hyperboloid 
least squares problem. The algorithm is as follows 

 

  Algorithm 

  Set initial point 0x provided by the chemist, and a maximum  

   number of  iterations maxk  allowed. Choose a tolerance 0ε >  

   and parameter 0.τ ≥  

  Until 
2

( )kR x ε<  or  maxk k>  

  Do 

(a) Compute ( ) ( ) ( )T

k k k
f x J x R x∇ = . 

    (b)Compute 2 ( ) ( ) ( ) ( )T

k k k k mf x J x J x R x Iτ∇ = + . 

                    (c) Compute 2 ( ) ( )
k k k

s f x f x= −∇ ∇ . 

                    (d) Set 1k k kx x s+ = +  and increment k . 

  End 

 

 

In our implementation, the following parameter values were 

chosen: -9

max 2000,  =10 ,  =0.1k ε τ=  and 
mI  is a diagonal matrix 

m m× . 

It was observed that this algorithm tends to repulse the closest 
local minimizer from any given starting point. (See [3]). 

 

3. NUMERICAL EXPERIMENTATION 
We conducted a numerical experimentation on the following test 
problems: TIM Barrel (Triose Phosphate Isomerase) data, and the 
R and T States of Fructose 1,6 bisphosphatase data. We use the 
coordinates of particular atoms of selected beta sheets at the (R) 
and (T) states from an allosteric enzyme. This information is 
obtained from published macromolecular structures archived at 
the Protein Data Bank (PDB) online. 

The main objective of the experiments is to show how the 
algorithm proposed by [3] performs on the three test cases with 
the initial point provided by the chemists. 

In Figure 2, we plot the solution obtained on the calculated 

hyperboloid for the TIM Barrel with *( ) 2.54 7f w e∇ = − , 
*( ) 1.77f w = , and CPU time of 4.67 seconds. 
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Figure 2 Mapped solution into hyperboloid for the  TIM 

Barrel 

 

 

Figure 3. Mapped solutions into the  hyperboloid for the active 

and inactive testcases. 

 

Figure 3 shows the graphical results obtained on the Fructose 1,6 
Bisphosphatase allosteric enzyme on the R and T states, 
respectively. 

Furthermore, we calculated the root-mean-square (RMS) error for 
each approximate solution given by the nonlinear and linear 

fitting as 2

1

1 m

RMS i

i

e R
m =

= ∑ for 1, , i m= … . Table 1 shows the 

results for the three testcases that indicates that the nonlinear 
fitting is superior than the linear fitting. 

Table 1 indicates that using a linear fitting procedure is highly 
inaccurate in determining an optimal fit. For the TIM Barrel 
testcase, the solution obtained by the linear fitting yield a small 
RMS error, but it did not provide with a solution approved by the 
chemists. In the contrary, by using a nonlinear method of fitting 
that incorporates first and approximated second derivative 
information provided reasonable optimal solutions and a close 
agreement between the active and inactive results as expected. 

 

Table 1. Comparison of RMS error between a linear vs 

nonlinear fitting of the three testcases. 

Testcase Linear Fitting Nonlinear fitting 

TIM Barrel 1.1506 1.5206 

Active (R-state) 20.6658 1.2081 

Inactive (T-state) 25.9421 1.0086 

 

4. CONCLUSIONS 
The numerical results indicates that the strategy is a promising 
approach for solving the particular nonlinear hyperboloid least-
squares problems.  
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